Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route.
نویسندگان
چکیده
Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H₂, He, CO₂, N₂, and CH₄.
منابع مشابه
Preparation and characterization of template-free mordenite type zeolite and comparison of m-xylene isomerization reaction over mordenite and SAPO-11
In this work, Mordenite zeolite was successfully synthesized with Si/Al ratio of 18 in absence of organic template. The hydrothermal method was applied for synthesis under optimum conditions: 24 h synthesis time, 180°C temperature and 2 days aging time. The obtained zeolite was characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray fluorescence (XRF), Fourier Trans...
متن کاملPreparation and characterization of template-free mordenite type zeolite and comparison of m-xylene isomerization reaction over mordenite and SAPO-11
In this work, Mordenite zeolite was successfully synthesized with Si/Al ratio of 18 in absence of organic template. The hydrothermal method was applied for synthesis under optimum conditions: 24 h synthesis time, 180°C temperature and 2 days aging time. The obtained zeolite was characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray fluorescence (XRF), Fourier Trans...
متن کاملOrganic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE
A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...
متن کاملOrganic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE
A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...
متن کاملPreparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions.
Zeolite A nanocrystals (100-240 nm) with well-developed crystal faces and uniform particle size distribution have been prepared at 80 degrees C for ca. 7.5 min in a two-phase liquid segmented microfluidic reactor using a manipulated organic template-free synthesis solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2018